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1 Purpose of Research

It has long been thought that planets form mainly in single star systems similar to our

own, but this assumption has recently been challenged. Data collected over the past

decade from the Hubble Space Telescope suggests the existence of a Jovian-mass planet

orbiting the millisecond pulsar PSR B1620-26 and its companion white dwarf [12]. This

is the first evidence of an extrasolar planet orbiting a binary star system.

Observational evidence suggests that at least half of all visible stars make up binary

star systems [2]. If planets can form just as readily in binary systems, then the exis-

tence of life in these systems is a possibility that cannot be ruled out. However, the

companion star’s radiation and perturbing influence may alter the climate enough to

make a candidate planet unsuitable, making the question of habitability a much more

complex and interesting problem.

The purpose of this study is to address this problem by finding a habitable range

of orbital size and star separation distance. A review of the literature did not find any

previous attempts to do this. Since the purpose of this study is not to define life or

postulate on all the factors involved in the formation of life, I will use an Earth-like

climate as a definition of habitability, namely a temperature range that would support

the existence of liquid water.

2 Background

2.1 Orbital Motion

To simulate a planet orbiting within a binary star system, a three-body model must

be considered in which each body gravitationally interacts with the other two. The
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Figure 1: A sample external (a) and internal (b) orbit

equations used in determining gravitation and orbital motion are Newton’s second law

of motion:

�F = m�a (1)

and Newton’s law of gravitation:

�F = −Gm1m2

r2
r̂ . (2)

Peterson states that orbital motion of a Newtonian system consisting of more than two

bodies cannot be predicted exactly, and must be solved numerically [7].

There are two general types of possible orbits within a binary system – internal and

external. A planet in an external orbit has a large mean radial distance relative to the

stars’ separation distance and orbits around both stars, whereas a planet in an internal

orbit has a small relative mean radial distance, and orbits mainly around a single star

(see Figure 1). For simplicity, this paper deals only with internal orbits.

This study deals only with resonant periodic orbits, or RPOs. A planet that exhibits

resonance in a binary star system would have an orbital period that is either a fraction

(for internal orbits) or a multiple (for external orbits) of the stars’ orbital period.
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Haghighipour states that such resonances create regions of stability in the orbital phase

space [3]. For example, the orbits of Neptune and Pluto around the Sun are in stable

resonance [7]. Stability is a crucial factor in the formation of life, since the time scales

involved measure in billions of years and an unstable orbit would most likely spiral into

or away from a star in a much shorter period.

2.2 Energy Budget

A simple energy budget was used to find the planetary temperature, Tp , in terms of

position and stellar properties and to determine a habitable range. The simplest model

to determine temperature is the Stefan-Boltzmann Law:

I0

4πd2
= σT 4

p . (3)

This model treats the planet as a blackbody, an object that absorbs all incident

radiation and re-emits it. The left side of the equation defines the flux density of

solar radiation at a distance d, where I0 is the star’s luminosity constant (3.827 ×
1026 J/s for the Sun) and the factor of 4π accounts for the fact that radiation ideally

spreads spherically. The constant of proportionality σ is known as the Stefan-Boltzmann

constant and has a value of 5.67 × 10−8W/(m2 · K4).

This model can be improved upon by adding two new terms to the Stefan-Botzmann

law:

I0

16πd2
(1 − α) = σT 4

p . (4)

The constant α is the planetary albedo, or the percentage of incident radiation that

is immediately reflected off a particular planet. The value of albedo for the Earth is

about 0.3 [7]. The additional factor of four in the flux density term estimates that solar
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Figure 2: A simple model of the greenhouse effect

flux hits the Earth with a cross section of a circle, with area π r2
p , and is reemitted as

a sphere with area 4π r2
p, where rp is the planet’s radius [4]. The final addition to the

energy budget equation is a simple model of the greenhouse effect [8]:

I0

16πd2
(1 − α) + σT 4

A = σT 4
p and σT 4

p = 2σT 4
A , (5)

where TA is the atmospheric temperature, and σT 4
A is the energy flux radiated by the

atmosphere.

This model treats the planet’s atmosphere as a blackbody itself, which does not

inhibit the transmission of solar radiation to the surface but absorbs and remits the

planetary emissions (see Figure 2). Using this fact, σT 4
A can be solved in terms of σT 4

p ,

reducing the equation to one variable. Thus, the final equation for temperature in term

of distance is:

Tp =
4

√
I0

8πσd2
(1 − α) . (6)

3 Methods

In this study, a variety of approximation techniques were used to simulate the possible

orbits and climates of an Earth-like planet in a binary system and to determine habit-
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ability. These techniques include numerical approximations to simulate orbital motion,

the Newton method to obtain closed orbits from near-closed initial orbits, and a simple

energy budget to calculate temperature. All computer simulations were originally pro-

grammed and run using MATLAB 6.1 [5] under Windows 98 on an 800 MHz Pentium

III processor.

3.1 Orbital Motion

As stated before, modeling the motion of objects influenced by the gravity of two or more

bodies is a problem that cannot be solved exactly in closed form. Instead, numerical

integration techniques must be used that break the bodies’ motion into discrete steps.

This study used a well-known numerical integration technique called the fourth-order

Runge-Kutta method, which was used in this study to program the ordinary differential

equation solver. The fourth-order Runge-Kutta method is a fourth-order explicit that

takes an initial Euler approximation for the change in position and velocity and extrap-

olates throughout the numerical step to obtain three other correcting approximations

[1]. The final values of velocity and acceleration that are used to advance the step are

obtained by a weighted average of all four approximated terms:

k =
1

6
(k1 + 2k2 + 2k3 + k4) , (7)

where k1 is the initial Euler approximation and k2, k3, and k4 are the correcting terms.

This Runge-Kutta method creates a simulation in which error varies inversely with

the fourth power of the number of steps. Although there are more accurate numeri-

cal integration techniques, the power and simplicity of the fourth-order Runge-Kutta

method makes its use practical. In this study, 10,000 steps were used to model each or-
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bit, which translates to step sizes varying between 11.91 seconds and 4.69×104 seconds

(13.01 hr.), depending on the orbital period.

To further simplify the model used in this study, a restricted three-body model was

used. In the restricted model, the gravitational pull of the planet is considered negligible

[6]. This is a reasonable simplification since the ratio of the mass of an Earth-like planet

to the mass of either star is approximately 3×10−6. Additionally, this study deals with

two dimensions, a justifiable assumption since solar systems tend to form on planes.

Finally, a rotating coordinate system was used. As the name suggests, this coordi-

nate system removes the rotation of the stars, which nullifies the necessity of modeling

their orbits as well. This system also requires center-of-mass coordinates for the two

stars, and assumes circular orbits [6]. In the rotating frame, equations for acceleration

(�ar) are now altered to include the rotation of the coordinate system:

�ar = �a − 2�ω × �v − �ω × (�ω × �r) , (8)

where �ω is the angular velocity, �v is the velocity, and �r is the radial distance. The term

�ω× (�ω×�r) in the new acceleration equation accounts for the false centrifugal force and

the term 2�ω × �v for the coriolis force, a rotational force that is partly responsible for

weather patterns on the Earth.

3.2 Newton Method

To obtain RPOs, this study uses a multivariable form of the Newton method, an itera-

tive calculus technique commonly used to estimate roots of polynomial functions.

To use the Newton method, the difference between the initial and final x-position

(x), y-position (y), x-velocity (u), and y-velocity (v) of an orbit is treated as a vector
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function, �f(�x), dependent on �x, which is the vector of initial values of the four variables.

Given the initial conditions of an RPO, this function will, by definition, equal zero [10].

This method starts with an almost periodic orbit, which can be obtained by “hunt-

ing” with the orbital simulation program. For such an orbit, �f(�x) will be non-zero, but

there exists a vector ∆�x that, when added to the vector of initial conditions, will create

an RPO:

�f(�x + ∆�x) = 0 . (9)

The vector ∆�x cannot be solved for exactly, so the Newton method uses an approxima-

tion of the above function to estimate ∆�x:

�f(�x + ∆�x) ≈ �f(�x) +
∂ �f

∂�x
(�x) · ∆�x = 0 . (10)

This matrix equation must be solved each time the Newton method is iterated; both

the final value of �f(�x) after the orbital period, which can be obtained from the Runge-

Kutta simulation, and the Jacobian, ∂ �f
∂�x

(�x) , are needed. The latter matrix also cannot

be determined exactly and must be numerically integrated along with the position and

velocity in the orbital simulation, using the Runge-Kutta method.

Several simplifying assumptions make the calculation of the two matrices simpler.

First, conservation of energy allows one of the two position and two velocity variables

to be determined in terms of the other three, so the differentiation of only the variables

x, y, and v is needed. Also, to guarantee that there is only one set of initial conditions

for each RPO, each iteration will be required to change just the initial values of y0, u0,

and v0, leaving x0 and the period constant, so that only the differentiation of �f(�x) with

respect to only y0, u0, and v0 is needed.
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3.3 Stability

RPOs used in this study must also be stable to be considered candidates for habitability.

A stable orbit is defined as one that, when perturbed, will not diverge exponentially.

To test this, the previously used Jacobian can be extended to include the differentiation

of u, and differentiation with respect to the initial x-position, x0, forming a complete

monodromy matrix M :

M =




∂x
∂x0

∂x
∂y0

∂x
∂u0

∂x
∂v0

∂y
∂x0

∂y
∂y0

∂y
∂u0

∂y
∂v0

∂u
∂x0

∂u
∂y0

∂u
∂u0

∂u
∂v0

∂v
∂x0

∂v
∂y0

∂v
∂u0

∂v
∂v0




. (11)

If the orbit is stable, the four-by-four monodromy matrix will have four eigenvalues,

with two real values equaling one, and two complex values with magnitudes of one [3].

Since the monodromy matrix solved in this program is an estimation, a convergence

test can be used to test the stability for each orbit.

3.4 Parameters

In a study such as this, there are many variables. As stated before, only internal

orbits will be considered. Also, for simplification, only one binary star system will be

considered, in which both stars are equal in mass and luminosity to our Sun. This

choice is arbitrary. In addition, the planet modeled in this study has an Earth-like

mass, albedo, and atmosphere. This was chosen because currently, the only known

habitable planet in the universe has these characteristics.
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4 Results

Forty RPOs were solved for using the Newton method and their global climates analyzed

(see Figures 3 and 4). To obtain a representative group of orbits, four sets of ten orbits

were found. For each set, the two stars were given a different separation distance DS,

varying between 1 AU (Astronomical Unit, 1.496 × 1011 meters) and 13 AUs. Within

each set, the planet’s mean radial distance, ravg, was varied.

The orbits studied were close to circular. Using a plot of distance versus time

(see Figure 5), the greatest deviation of distance from ravg was found for each orbit.

Typically, the larger the ratio of ravg to DS, the larger the deviation. For RPOs used in

this study, the greatest deviation was 12.02%, although most were under 10%. At high

ravg :DS ratios, orbits tend to be even less circular and are more likely to be unstable.

As Figure 4 shows, a temperature plot for this type of internal orbit starts at some

temperature, spikes, and returns to the initial temperature. This is expected, as the

combined incident radiation absorbed by the planet increases as its orbit takes it closer

to the second star.

Figure 4 plots the amplitude (difference in maximum and minimum values) in the

temperature graph, Atemp, for each set of orbits as a function of the mean radial distance

ravg and fits it to a power function. Scaling the units to one AU enables each set to be

compared to the others. Atemp is scaled by multiplying by
√

DS and ravg is scaled by

dividing by DS, where ravg and DS are measured in AUs.
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Figure 3: A sample orbit with initial conditions and period
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Figure 4: Temperature versus time for one
period
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Figure 5: Distance (solid line) and ravg (dot-
ted line) from primary star versus time for one
orbit
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Figure 6: Scaled Atemp as a function of scaled ravg, for four values of DS
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If all forty points are fit to a single power curve and returned to dimensional units,

the relationship is:

Atemp = 327.82 · r2.068
avg

D2.568
S

, (12)

where ravg and DS are measured in AUs. It is possible that the exponents should ideally

be 2.0 and 2.5, and that the error is a result of the deviation of orbital distance from

the mean value.

5 Discussion

5.1 Habitability

Previously, temperature models have been used to solve for habitable zones of single

star systems, usually defined as the range of distances in which water can exist in liquid

form. Using the energy budget model outlined in Equation 6, the habitable zone of the

Sol system was found to range between 0.66 and 1.23 AUs from the Sun (see Figure 7).
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Figure 7: Habitable range of the Sun (shaded blue)
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Figure 8: The limiting case, solved for using Equations 6 and 11

The existence of a second, identical star influencing the energy budget of the planet

complicates the problem of defining a habitable zone. Using the energy budget model

in Equation 6 and Equation 12, a system of equations can be set up that solves for a

limiting case of habitability in a binary star system that has two characteristics. The

first is that the orbit has a minimum temperature just above the freezing point of water

(273◦ K) and the second is that the planet has a spike in temperature no more than

100◦, leaving the maximum temperature below the boiling point (373◦ K).

It has been determined that such a limiting case exists if ravg equals 1.4 AUs and

DS equals 2.1 AUs (see Figure 8). If the value of DS is any smaller, the value of Atemp,

the temperature spike, would be greater than 100◦, and the planet’s temperature would

not remain within the boiling and freezing points.

The possibility of the existence of habitable planets increases as the value of DS

increases. At a value of 2.1 AUs, there is theoretically only one stable orbit that remains

within the habitable temperature range. As the distance increases, so does the range

of habitable values of ravg. As DS approaches infinity, the effects of the companion star
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become negligible, and the habitable range of ravg quickly approaches the range of 0.66

to 1.23 AUs, the range solved for a single star.

The results of this study can be applied to observed binary systems. The neighboring

α Centauri system has been considered as a potential candidate for the formation of

planets and even life. The two stars in this system, α Centauri A and B, are both close

in luminosity and mass to the Sun and have a value of DS varying in between 11.4 and

36 AUs [11]. Since the α Centauri system consists of two Sun-like stars, and always

has a value of DS significantly greater than 2.1 AUs, this study concludes that it is a

candidate for habitable systems if planets have formed in suitable orbits.

5.2 Temperature Models

This study used a simplified greenhouse effect to model climate. Although it is a reason-

able model for temperature ranges close to that of our planet, it becomes increasingly

inaccurate as the temperatures deviate from this range [9]. This study could be im-

proved by replacing this model with one that uses experimental data to estimate the

effects of CO2 and water vapor on climate.

In addition, a simple model of ocean mixing can be used to estimate temperature:

dT

dt
=

S(t) − σT 4
p

ρw cp h
, (13)

where S(t) is incident energy flux as a function of time, σT 4
p represents planetary

emissions, ρw is the density of water, cp is the specific heat of water at constant pressure,

and h is the height of the ocean’s mixing layer, about 50 meters on average for the Earth

[9].

The addition of ocean mixing to an energy budget tends to average temperature
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Figure 9: Temperature plot of the limiting case with a deep ocean, for ten periods

variations over a long period of time and can drastically change planetary conditions as

Figure 9 shows. This figure shows the temperature plot for ten periods of the limiting

case modeled in Figure 8, given an ocean with a mixing layer of 50 meters and an initial

temperature of 290◦ Kelvin. The planet’s climate approaches a sinusoidal equilibrium

with the varying levels of radiation, with peaks at roughly 297◦ and troughs at roughly

288◦ Kelvin.

This model shows that a planet with a sufficiently deep ocean will be able to stand

greater variances of radiation and have a larger habitability zone due to the tendency

of the mixing layer in a planet’s ocean to average temperature variations.

5.3 Further Research

There are many avenues for further research. As demonstrated above, the addition of

an ocean to the energy budget model greatly changes planetary conditions. Studies

could be done to compare different energy budget models and the effect they have on

habitability zones in both single and binary star systems.
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As stated before, the choice of a binary system in which both stars are identical in

mass and luminosity to the Sun was arbitrary. Further studies could consider systems

in which these values are not equal. Since there is a mass-luminosity relationship

for main sequence stars, this reduces the problem to two variables, one for each star.

These variables could even be chosen to specifically model observed systems, such as α

Centauri.

In addition, external orbits could be considered. This study concludes that there is

a minimum star separation distance DS required for the existence of habitable internal

orbits, and solves for one case. Conversely, it is likely that there is a maximum value of

DS for which the existence of habitable external orbits in a binary system is possible.

Finally, even more exotic types of orbits could be considered. If the mass ratio of a star

to its companion is large enough, objects can stably orbit in or around the system’s L4

and L5 Lagrange points, points in a two-body system where the net force on a third

mass equals zero [6].
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